题目内容
【题目】动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点 .
【答案】(2,0)
【解析】
试题先由抛物线的标准方程写出其焦点坐标,准线方程,再结合抛物线的定义得出焦点必在动圆上,从而解决问题.
解:抛物线y2=8x的焦点F(2,0),
准线方程为x+2=0,
故圆心到直线x+2=0的距离即半径等于圆心到焦点F的距离,
所以F在圆上.
故答案为(2,0).
练习册系列答案
相关题目
题目内容
【题目】动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点 .
【答案】(2,0)
【解析】
试题先由抛物线的标准方程写出其焦点坐标,准线方程,再结合抛物线的定义得出焦点必在动圆上,从而解决问题.
解:抛物线y2=8x的焦点F(2,0),
准线方程为x+2=0,
故圆心到直线x+2=0的距离即半径等于圆心到焦点F的距离,
所以F在圆上.
故答案为(2,0).