题目内容

已知三个不等式①x2-4x+3<0,②x2-6x+8<0,③2x2-9x+m<0,要使同时满足①和②的所有x的值都满足③,的实数m的取值范围是(  )
分析:利用一元二次不等式的解法分别解出①②,再求出其交集;其交集是2x2-9x+m<0解集的子集.解出即可.
解答:解:①由x2-4x+3<0,解得1<x<3;
②由x2-6x+8<0,解得2<x<4;
∴①∩②=(1,3)∩(2,4)=(2,3).
∵③(2,3)是2x2-9x+m<0解集的子集.
令f(x)=2x2-9x+m,则
f(2)≤0
f(3)≤0
,解得m≤9,
故选C.
点评:熟练掌握一元二次不等式的解法、交集的运算、集合之间的关系等是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网