题目内容

如图,已知椭圆的焦点为F1、F2,A、B为顶点,离心率e=.

(1)求证:A、F1、B、F2四点共圆;

(2)以BF1为直径,作半圆O1,AF切半圆于E,交F1B延长线于F,求cosF的值.

图20

解析:(1)∵=,∴a2=2c2.

又a2=b2+c2,∴b2+c2=2c2.

∴b=c,即OA=OF1=OB=OF2.

∴四边形AF1BF2是正方形.∴A、F1、B、F2四点共圆.

(2)连结O1E.∵AF切⊙O1于E,∴O1E⊥AF.

∴△O1EF∽△AF1F.∴.

∴F1F=2EF.又由切线长定理得EF2=FB·FF1,

∴BF=EF.∴O1B=EF,BO1=O1B+BF=EF.∴cosF=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网