题目内容

已知定义域为(-1,1)函数f(x)=-x3-x,且f(a-3)+f(9-a2)<0,则a的取值范围是
(2
2
,3)
(2
2
,3)
分析:先判断函数f(x)的奇偶性、单调性,然后把f(a-3)+f(9-a2)<0转化为关于自变量的值间的大小关系,解不等式即可,要注意函数定义域.
解答:解:因为f(-x)=-(-x)3-(-x)=x3+x=-f(x),所以f(x)为奇函数,又f(x)=-x3-x单调递减,
所以f(a-3)+f(9-a2)<0,可化为f(a-3)<-f(9-a2)=f(a2-9),
所以有
a-3>a2-9
-1<a-3<1
-1<a2-9<1
a2-a-6<0
2<a<4
8<a2<10
,解得,2
2
<a<3

故答案为:(2
2
,3).
点评:本题考查函数的奇偶性、单调性以及不等式的求解,解决本题的关键是利用函数f(x)的性质把不等式中的符号“f”去掉,变成关于自变量值间的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网