题目内容
已知函数的周期为,图像的一个对称中心为,将函数图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移个单位长度后得到函数的图像.
(1)求函数与的解析式;
(2)是否存在,使得按照某种顺序成等差数列?若存在,请确定的个数; 若不存在,说明理由.
(3)求实数与正整数,使得在内恰有2013个零点.
本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识,考查运算求解能力.抽象概括能力,考查函数与方程思想,数形结合思想,分类与整合思想.化归与转化思想,满分14分.
解:(Ⅰ)由函数的周期为,,得
又曲线的一个对称中心为,
故,得,所以
将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变)后可得的图象,再将的图象向右平移个单位长度后得到函数
(Ⅱ)当时,,
所以
问题转化为方程在内是否有解
设,
则
因为,所以,在内单调递增
又,
且函数的图象连续不断,故可知函数在内存在唯一零点,
即存在唯一的满足题意
(Ⅲ)依题意,,令
当,即时,,从而不是方程的解,所以方程等价于关于的方程,
现研究时方程解的情况
令,
则问题转化为研究直线与曲线在的交点情况
,令,得或
当变化时,和变化情况如下表
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
当且趋近于时,趋向于
当且趋近于时,趋向于
当且趋近于时,趋向于
当且趋近于时,趋向于
故当时,直线与曲线在内有无交点,在内有个交点;
当时,直线与曲线在内有个交点,在内无交点;
当时,直线与曲线在内有个交点,在内有个交点
由函数的周期性,可知当时,直线与曲线在内总有偶数个交点,从而不存在正整数,使得直线与曲线在内恰有个交点;当时,直线与曲线在内有个交点,由周期性,,所以
综上,当,时,函数在内恰有个零点
练习册系列答案
相关题目