题目内容

9.已知函数f(x)=log2(3x2-mx+2)在区间[1,+∞)上单调递增,则实数m的取值范围是(-∞,5).

分析 令u(x)=3x2-mx+2,由复合函数的单调性可得函数u(x)在区间[1,+∞)上单调递增且恒为正实数,再解不等式组即可.

解答 解:记u(x)=3x2-mx+2,则f(x)=log2u(x),显然,
u(x)在(-∞,$\frac{m}{6}$)上单调递减,在($\frac{m}{6}$,+∞)上单调递增,
再由复合函数的单调性可得,
函数u(x)在区间[1,+∞)上单调递增且恒为正实数,
则$\left\{\begin{array}{l}{\frac{m}{6}≤1}\\{u(1)>0}\end{array}\right.$,解得 m<5,
故答案为:(-∞,5).

点评 本题主要考查了复合函数单调性性的应用,二次函数的图象和性质,体现了转化的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网