题目内容
3、若集合M={1,m2},集合N={2,4},M∪N={1,2,4},则实数m的值的个数是( )
分析:由题意M∪N={1,2,4},得集合M中必定含有元素1,即m2=1,,可求得m,最后求出m的个数即可.
解答:解:∵M∪N={1,2,4},
∴集合M一定含有1,
即m2=1,但m≠1,
∴m=-1,
故m的值只有一个,
故选A.
∴集合M一定含有1,
即m2=1,但m≠1,
∴m=-1,
故m的值只有一个,
故选A.
点评:本题考查了并集及运算、集合的确定性、互异性、无序性,属于基础题.

练习册系列答案
相关题目