题目内容
为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素,的含量(单位:毫克)下表是乙厂的5件产品的测量数据:
编号 |
1 |
2 |
3 |
4 |
5 |
160 |
178 |
166 |
175 |
180 |
|
75 |
80 |
77 |
70 |
81 |
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;
(2)若且为次品,从乙厂抽出的上述5件产品中,有放回的随机抽取1件产品,抽到次品则停止抽取,否则继续抽取,直到抽出次品为止,但抽取次数最多不超过3次,求抽取次数的分布列及数学期望.
(1)35件(2)分布列如下:
1 |
2 |
3 |
|
P |
【解析】
试题分析:(1)设乙厂生产的产品数量为a件,则,解得a=35,
所以乙厂生产了35件产品.
(2)由题意可知,抽取次数的取值为1,2,3,
由表格可知,从乙厂抽取的5件产品中有一件是次品,所以,
所以抽取次数分布列如下:
1 |
2 |
3 |
|
P |
.
考点:本小题主要考查分层抽样,离散型随机变量的分布列、期望等.
点评:分层抽样关键是确定所分的层,而求离散型随机变量的分布列、期望等关键是确定随机变量的取值和各自的概率,要注意用概率和是否为1验证所写分布列是否正确.
编号 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
(2)当产品中的微量元素x,y满足x≥175,y≥75,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量.
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中的优等品数ξ的分布列及其均值(即数学期望).
为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取12件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号 |
1 |
2 |
3 |
4 |
5 |
x |
169 |
178 |
166 |
175 |
180 |
y |
75 |
80 |
77 |
76 |
81 |
(1)已知甲厂生产的产品共84件,求乙厂生产的产品数量;
(2)当产品中的微量元素x,y满足x≥175且y≥75,该产品为优等品,
①用上述样本数据估计乙厂生产的优等品的数量;
②从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其期望.
(本小题满分12分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号 |
1 |
2 |
3 |
4 |
5 |
x |
169 |
178 |
166 |
175 |
180 |
y |
75 |
80 |
77 |
70 |
81 |
已知甲厂生产的产品共有98件.
(I)求乙厂生产的产品数量;
(Ⅱ)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;
(Ⅲ)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望).