题目内容
已知向量a=(1,2),b=(2,-2).
(1)设c=4a+b,求(b·c)a;
(2)若a+λb与a垂直,求λ的值;
(3)求向量a在b方向上的投影.
解:(1)∵a=(1,2),b=(2,-2),
∴c=4a+b=(4,8)+(2,-2)=(6,6).
∴b·c=2×6-2×6=0,∴(b·c)a=0a=0.
(2)a+λb=(1,2)+λ(2,-2)=(2λ+1,2-2λ),
由于a+λb与a垂直,
∴2λ+1+2(2-2λ)=0,∴λ=.
(3)设向量a与b的夹角为θ,
向量a在b方向上的投影为|a|cosθ.
∴|a|cosθ===-=-.
练习册系列答案
相关题目