题目内容

(2013•徐州一模)已知a>0,b<0,且a+b≠0,令a1=a,b1=b,且对任意的正整数k,当ak+bk≥0时,ak+1=
1
2
ak-
1
4
bk
bk+1=
3
4
bk
;当ak+bk<0时,bk+1=-
1
4
ak+
1
2
bk
ak+1=
3
4
ak

(1)求数列{an+bn}的通项公式;
(2)若对任意的正整数n,an+bn<0恒成立,问是否存在a,b使得{bn}为等比数列?若存在,求出a,b满足的条件;若不存在,说明理由;
(3)若对任意的正整数n,an+bn<0,且b2n=
3
4
b2n+1
,求数列{bn}的通项公式.
分析:(1)通过计算转化建立{bn+an}的相邻两项之间的关系是解决本题的关键,发现该数列是等比数列,从而确定出通项公式;
(2)假设存在合题意的a,b,然后确定出bn的关系式是解决本题的关键,通过分析其相邻项之间的关系即可求解
(3)通过bn的相应项之间的关系得到关于n的不等关系,然后结合已知an的递推关系可求bn的表达式
解答:解:(1)当ak+bk≥0时,ak+1=
1
2
ak-
1
4
bk
bk+1=
3
4
bk

∴ak+1+bk+1=
1
2
ak-
1
4
bk+
3
4
bk
=
1
2
(ak+bk)

当ak+bk<0时,bk+1=-
1
4
ak+
1
2
bk
ak+1=
3
4
ak

∴ak+1+bk+1=-
1
4
ak+
1
2
bk+
3
4
ak
=
1
2
(ak+bk)

∴总有ak+1+bk+1=
1
2
(ak+bk)

∵a1=a,b1=b,
∴a1+b1=b+a
∴数列{an+bn}是以a+b为首项,以
1
2
为公比的等比数列
∴bn+an=(b+a)(
1
2
)n-1
(2)∵an+bn<0恒成立
∴(b+a)(
1
2
)n-1
<0恒成立
∴b+a<0
∵当ak+bk<0时,bk+1=-
1
4
ak+
1
2
bk
ak+1=
3
4
ak

an=a•(
3
4
)n-1

bn=(a+b)•(
1
2
)n-1-a•(
3
4
)n-1
不可能是个等比数列
故{bn}不是等比数列
(3)∵an+bn<0,bk+1=-
1
4
ak+
1
2
bk
ak+1=
3
4
ak

b2n+1=-
1
4
a2n+
1
2
b2n
a2n+1=
3
4
a2n

b2n=
3
4
b2n+1

b2n+1=
4
3
b2n
=-
1
4
a2n+
1
2
b2n

b2n=-
3
10
a2n
=-
3
10
a•(
3
4
)2n-1

∴bn=-
3a
10
•(
3
4
)n-1
点评:本题考查数列的综合问题,考查数列的递推关系与通项公式之间的关系,考查学生探究性问题的解决方法,注意体现转化与化归思想的运用,考查学生分析问题解决问题的能力和意识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网