题目内容
已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,2Sn=anan+1+r.
(1)若r=-6,数列{an}能否成为等差数列?若能,求c满足的条件;若不能,请说明理由.
(2)设Pn=
+
+
+…
,Qn=
+ +
+…
,若r>c>4,求证:对于一切n∈N*,不等式-n<Pn-Qn<n2+n恒成立.
(1)若r=-6,数列{an}能否成为等差数列?若能,求c满足的条件;若不能,请说明理由.
(2)设Pn=
a1 |
a1-a2 |
a1 |
a1-a2 |
a3 |
a3-a4 |
a2n-1 |
a2n-1-a2n |
a2 |
a2-a3 |
a4 |
a4-a5 |
a2n |
a2n-a2n+1 |
分析:(1)n=1时,2a1=a1a2+r,由a1=c,知a2=2-
.n≥2时,由2Sn=anan+1+r,2Sn-1=an-1an+r,得2an=an(an+1-an-1).所以an+1-an-1=2.由此能够导出当且仅当c=3时,数列{an}为等差数列.
(2)由a2n-1-a2n=[a1+2(n-1)]-[a2+2(n-1)]=a1-a2=c+
-2.知a2n-a2n+1=[a2+2(n-1)]-(a1+2n)=a2-a1-2=-(c+
).所以Pn-Qn=
•n•(n+c-1)+
•n•(n+1-
)=(
+
)n2+(
+
)n.由此能够推导出对于一切n∈N*,不等式-n<Pn-Qn<n2+n恒成立.
r |
c |
(2)由a2n-1-a2n=[a1+2(n-1)]-[a2+2(n-1)]=a1-a2=c+
r |
c |
r |
c |
1 | ||
c+
|
1 | ||
c+
|
r |
c |
1 | ||
c+
|
1 | ||
c+
|
c-1 | ||
c+
|
1-
| ||
c+
|
解答:(1)解:n=1时,2a1=a1a2+r,
∵a1=c≠0,
∴2c=ca2+r,a2=2-
. (1分)
n≥2时,2Sn=anan+1+r,①
2Sn-1=an-1an+r,②
①-②,得2an=an(an+1-an-1).
∵an≠0,∴an+1-an-1=2. ( 3分)
则a1,a3,a5,…,a2n-1,…成公差为2的等差数列,
a2n-1=a1+2(n-1).
a2,a4,a6,…,a2n,…成公差为2的等差数列,
a2n=a2+2(n-1).
要使{an}为等差数列,当且仅当a2-a1=1.
即2-
-c=1.r=c-c2. ( 4分)
∵r=-6,∴c2-c-6=0,c=-2或3.
∵当c=-2,a3=0,不合题意,舍去.
∴当且仅当c=3时,数列{an}为等差数列. (5分)
(2)证明:a2n-1-a2n=[a1+2(n-1)]-[a2+2(n-1)]=a1-a2=c+
-2.
a2n-a2n+1=[a2+2(n-1)]-(a1+2n)=a2-a1-2=-(c+
). (8分)
∴Pn=
[na1+
×2]
=
•n•(n+c-1).(9分)
Qn=-
[na2+
×2]
=-
•n•(n+1-
).(10分)
∴Pn-Qn=
•n•(n+c-1)+
•n•(n+1-
)
=(
+
)n2+(
+
)n.(11分)
∵r>c>4,
∴c+
≥2
>4,
∴c+
-2>2.
∴0<
+
<
+
=
<1. (13分)
且
+
=
+
-1>-1. (14分)
又∵r>c>4,
∴
>1,
则0<c-1<c+
-2.0<c+1<c+
.
∴
<1.
∴
<1.
∴
+
-1<1.(15分)
∴对于一切n∈N*,不等式-n<Pn-Qn<n2+n恒成立.(16分)
∵a1=c≠0,
∴2c=ca2+r,a2=2-
r |
c |
n≥2时,2Sn=anan+1+r,①
2Sn-1=an-1an+r,②
①-②,得2an=an(an+1-an-1).
∵an≠0,∴an+1-an-1=2. ( 3分)
则a1,a3,a5,…,a2n-1,…成公差为2的等差数列,
a2n-1=a1+2(n-1).
a2,a4,a6,…,a2n,…成公差为2的等差数列,
a2n=a2+2(n-1).
要使{an}为等差数列,当且仅当a2-a1=1.
即2-
r |
c |
∵r=-6,∴c2-c-6=0,c=-2或3.
∵当c=-2,a3=0,不合题意,舍去.
∴当且仅当c=3时,数列{an}为等差数列. (5分)
(2)证明:a2n-1-a2n=[a1+2(n-1)]-[a2+2(n-1)]=a1-a2=c+
r |
c |
a2n-a2n+1=[a2+2(n-1)]-(a1+2n)=a2-a1-2=-(c+
r |
c |
∴Pn=
1 | ||
c+
|
n(n-1) |
2 |
=
1 | ||
c+
|
Qn=-
1 | ||
c+
|
n(n-1) |
2 |
=-
1 | ||
c+
|
r |
c |
∴Pn-Qn=
1 | ||
c+
|
1 | ||
c+
|
r |
c |
=(
1 | ||
c+
|
1 | ||
c+
|
c-1 | ||
c+
|
1-
| ||
c+
|
∵r>c>4,
∴c+
r |
c |
r |
∴c+
r |
c |
∴0<
1 | ||
c+
|
1 | ||
c+
|
1 |
2 |
1 |
4 |
3 |
4 |
且
c-1 | ||
c+
|
1-
| ||
c+
|
c-1 | ||
c+
|
c+1 | ||
c+
|
又∵r>c>4,
∴
r |
c |
则0<c-1<c+
r |
c |
r |
c |
∴
c-1 | ||
c+
|
∴
c+1 | ||
c+
|
∴
c-1 | ||
c+
|
c+1 | ||
c+
|
∴对于一切n∈N*,不等式-n<Pn-Qn<n2+n恒成立.(16分)
点评:本题考查数列和不等式的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,计算繁琐,易出错.解题时要认真审题,仔细解答,注意培养计算能力.
练习册系列答案
相关题目
已知各项均不为零的数列{an},定义向量
=(an,an+1),
=(n,n+1),n∈N*.下列命题中真命题是( )
cn |
bn |
A、若?n∈N*总有
| ||||
B、若?n∈N*总有
| ||||
C、若?n∈N*总有
| ||||
D、若?n∈N*总有
|