题目内容
【题目】数(其中)的图象如图所示,为了得到的图象,则只要将的图象上所有的点( )
A.向左平移个单位长度,纵坐标缩短到原来的,横坐标不变
B.向左平移个单位长度,纵坐标伸长到原来的3倍横坐标不变
C.向右平移个单位长度,纵坐标缩短到原来的,横坐标不变
D.向右平移个单位长度,纵坐标伸长到原来的3倍,横坐标不变
【答案】D
【解析】
根据函数的最小值、对称中心、对称轴以及函数过点,可以求出的解析式,最后根据正弦型函数图象变换的性质进行求解即可.
因为的最小值为,所以,再由对称中心与对称轴的距离可得周期,从而,所以.因为过点,所以,解得.因为,所以,所以.则需将向右平移个单位,即,然后再将的横坐标不变,纵坐标伸长到原来的3倍,得到.
故选:D
练习册系列答案
相关题目
【题目】某蛋糕店计划按天生产一种面包,每天生产量相同,生产成本每个6元,售价每个8元,未售出的面包降价处理,以每个5元的价格当天全部处理完.
(1)若该蛋糕店一天生产30个这种面包,求当天的利润y(单位:元)关于当天需求量n(单位:个,)的函数解析式;
(2)蛋糕店记录了30天这种面包的日需求量(单位:个),整理得表:
日需求量n | 28 | 29 | 30 | 31 | 32 | 33 |
频数 | 3 | 4 | 6 | 6 | 7 | 4 |
假设蛋糕店在这30天内每天生产30个这种面包,求这30天的日利润(单位:元)的平均数及方差;
(3)蛋糕店规定:若连续10天的日需求量都不超过10个,则立即停止这种面包的生产,现给出连续10天日需求量的统计数据为“平均数为6,方差为2”,试根据该统计数据决策是否一定要停止这种面包的生产?并给出理由.