题目内容

例4.若x∈(0,1),a>0且a≠1,求证:|loga(1-x)|>loga(1+x)|.
分析:应用分析法,寻找使不等式成立的充分条件,证明不等式即可.
解答:证明:要证明:|loga(1-x)|>loga(1+x)|.
只要证明|
lg(1-x)
lga
|
>|
lg(1+x)
lga
|
|lga|>0
即证明|lg(1-x)|>|lg(1+x)|
因为x∈(0,1) 所以就是证明|
lg(1-x)
lg(1+x)
|>0

即|log(1+x)(1-x)|>0,此式显然成立.
所以原不等式成立.
点评:本题考查不等式的证明,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网