题目内容
(浙江卷理18)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2。
(Ⅰ)求证:AE//平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为?
本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.
方法一:(Ⅰ)证明:过点作交于,连结,
可得四边形为矩形,又为矩形,
所以,从而四边形为平行四边形,
故.因为平面,平面,
所以平面.
(Ⅱ)解:过点作交的延长线于,连结.
由平面平面,,得平面,
从而.所以为二面角的平面角.
在中,因为,,所以,.
又因为,所以,
从而.
于是.
因为,
所以当为时,二面角的大小为.
方法二:如图,以点为坐标原点,以和分别作为轴,轴和轴,
建立空间直角坐标系.设,
则,,,,.
(Ⅰ)证明:,,,
所以,,从而,,
所以平面.因为平面,所以平面平面.
故平面.
(Ⅱ)解:因为,,
所以,,从而
解得.所以,.
设与平面垂直,则,,
解得.又因为平面,,
所以,得到.
所以当为时,二面角的大小为.
练习册系列答案
相关题目