题目内容

设AB为过抛物线y2=2px(p>0)的焦点的弦,则|AB|的最小值为(  )
A、
P
2
B、P
C、2P
D、无法确定
分析:根据抛物线方程可得焦点坐标,进而可设直线L的方程与抛物线联立根据韦达定理求得x1+x2,进而根据抛物线定义可求得|AB|的表达式,整理可得|AB|=2p(1+
1
k2
),由于k=tana,进而可知当a=90°时AB|有最小值.
解答:解;焦点F坐标(
p
2
,0),设直线L过F,则直线L方程为y=k(x-
p
2

联立y2=2px得k2x2-(pk2+2p)x+
p2k2
4
=0
由韦达定理得x1+x2=p+
2p
k2

|AB|=x1+x2+p=2p+
2p
k2
=2p(1+
1
k2

因为k=tana,所以1+
1
k2
=1+
1
tan2α
=
1
sin2α

所以|AB|=
2p
sin2α

当a=90°时,即AB垂直于X轴时,AB取得最小值,最小值是|AB|=2p
故选C
点评:本题主要考查抛物线的应用.这道题综合了抛物线的性质、抛物线的焦点弦、直线与抛物线的关系等问题.综合性很强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网