题目内容
已知椭圆方程为,过右焦点斜率为1的直线到原点的距离为.
(1)求椭圆方程.
(2)已知为椭圆的左右两个顶点,为椭圆在第一象限内的一点,为过点且垂直轴的直线,点为直线与直线的交点,点为以为直径的圆与直线的一个交点,求证:三点共线.
在平面直角坐标系中,已知双曲线.
(1)过的左顶点引的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成
的三角形的面积;(4分)
(2)设斜率为1的直线l交于P、Q两点,若l与圆相切,求证:
OP⊥OQ;(6分)
(3)设椭圆. 若M、N分别是、上的动点,且OM⊥ON,
求证:O到直线MN的距离是定值.(6分)