题目内容
以下四图,都是同一坐标系中三次函数及其导函数的图象,其中一定正确的序号是( )
分析:因为当原函数为增函数时,导数大于0,原函数为减函数时,导数小于0,原函数取得极值时,导数等于0,所以只需逐一判断每个选项当原函数是增或减时,导数的正负,就可找到正确选项.
解答:解:①中三次函数的图象由左到右是先减后增再减,对应的导数是先小于0,再大于0,最后又小于0,导数的正负与原函数的单调性一致,∴①正确.
②中三次函数的图象由左到右是先减后增再减,对应的导数是先小于0,再大于0,最后又小于0,导数的正负与原函数的单调性一致,∴②正确.
③中三次函数的图象由左到右是先增后减再增,对应的导数在原函数的增区间上既有负值,又有正值,导数的正负与原函数的单调性不一致,∴③错误.
④中三次函数的图象由左到右是先增后减再增,对应的导数在原函数的增区间上为负值,导数的正负与原函数的单调性不一致,∴④错误.
故选A
②中三次函数的图象由左到右是先减后增再减,对应的导数是先小于0,再大于0,最后又小于0,导数的正负与原函数的单调性一致,∴②正确.
③中三次函数的图象由左到右是先增后减再增,对应的导数在原函数的增区间上既有负值,又有正值,导数的正负与原函数的单调性不一致,∴③错误.
④中三次函数的图象由左到右是先增后减再增,对应的导数在原函数的增区间上为负值,导数的正负与原函数的单调性不一致,∴④错误.
故选A
点评:本题借助在同一坐标系中的原函数图象与导函数的图象,判断了原函数的单调性与导数的正负之间的关系,是导数的应用.
练习册系列答案
相关题目