题目内容
在中,角所对的边分别为,且满足.(1)求角的大小;(2)求的最大值,并求取得最大值时角的大小.
(1) (2)
解析
已知向量,,且.求及;若的最小值是,求实数的值;设,若方程在内有两个不同的解,求实数的取值范围.
已知,,,且函数的最大值为,最小值为。(1)求的值;(2)(ⅰ)求函数的单调递增区间;(ⅱ)求函数的对称中心.
已知函数y=3sin (1)用五点法在给定的坐标系中作出函数一个周期的图象;(2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心.
已知向量m=(sin x,1),n=,函数f(x)=(m+n)·m.(1)求函数f(x)的最小正周期T及单调递增区间;(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2,c=4,且f(A)是函数f(x)在上的最大值,求△ABC的面积S.
已知向量,函数的图象的两相邻对称轴间的距离为.(1)求的值;(2)若,,求的值;(3)若,且有且仅有一个实根,求实数的值.
已知函数,.(1)求函数的最小正周期和单调增区间;(2)求函数在区间上的最小值和最大值;(3)若,求使的取值范围.
已知函数,.(1)求函数的最小正周期和单调递增区间;(2)若函数图象上的两点的横坐标依次为,为坐标原点,求的外接圆的面积.
已知函数.(1)求函数的最大值,并写出取最大值时的取值集合;(2)已知中,角的对边分别为若求实数的最小值.