题目内容
如图,一块矿石晶体的形状为四棱柱,底面ABCD是正方形,CC1=3,CD=2,且∠C1CB=∠C1CD=60°.(1)设
CD |
a |
CB |
b |
CC1 |
c |
a |
b |
c |
A1C |
(2)O为四棱柱的中心,求CO的长;
(3)求证:A1C⊥BD.
分析:(1)利用空间向量的加法,可得平行六面体的体对角线,可得
=
+
+
,再利用
与
互为相反向量,就可求出
.
(2)因为O为四棱柱的中心,所以O为线段A1C的中点,所以要求CO的长,只需求出A1C的长即可.利用(1)中所求
=
+
+
,再求模即可.
(3)要证A1C⊥BD,只需证明
•
=0,即可,根据
=
+
+
,
=
-
,也即是证明(
+
+
)•(
-
)=0,再用已知计算即可.
CA1 |
a |
b |
c |
A1C |
CA1 |
A1C |
(2)因为O为四棱柱的中心,所以O为线段A1C的中点,所以要求CO的长,只需求出A1C的长即可.利用(1)中所求
CA1 |
a |
b |
c |
(3)要证A1C⊥BD,只需证明
CA1 |
BD |
CA1 |
a |
b |
c |
BD |
a |
b |
a |
b |
c |
a |
b |
解答:解:(1)由
=
,
=
,
=
,得
=
+
+
.
所以,
=-
-
-
.
(2)O为四棱柱的中心,即O为线段A1C的中点.
由已知条件,得|
|=|
|=2,|
|=3,
•
=0,<
,
>=60°,<
,
>=60°.
根据向量加减法得
=
-
,
=
+
+
.|
|2=
2=(
+
+
)2=
2+
2+
2+2
•
+2
•
+2
•
=22+22+32+0+2×3×2×cos60°+2×3×2×cos60°=29.
∴A1C的长为
.
所以CO=
.
(3)∵
•
=(
+
+
)•(
-
)=
2+
•
-
2-
•
=22+2×3×cos60°-22-2×3×cos60°=0,
∴CA1⊥BD.
CD |
a |
CB |
b |
CC1 |
c |
CA1 |
a |
b |
c |
所以,
A1C |
a |
b |
c |
(2)O为四棱柱的中心,即O为线段A1C的中点.
由已知条件,得|
a |
b |
c |
a |
b |
a |
c |
b |
c |
根据向量加减法得
BD |
a |
b |
CA1 |
a |
b |
c |
CA1 |
CA1 |
a |
b |
c |
a |
b |
c |
a |
b |
b |
c |
a |
c |
=22+22+32+0+2×3×2×cos60°+2×3×2×cos60°=29.
∴A1C的长为
29 |
所以CO=
| ||
2 |
(3)∵
CA1 |
BD |
a |
b |
c |
a |
b |
a |
a |
c |
b |
b |
c |
=22+2×3×cos60°-22-2×3×cos60°=0,
∴CA1⊥BD.
点评:本题考查了用空间向量判断几何中的位置关系.注意和平面向量知识相联系.
练习册系列答案
相关题目