题目内容
(2013•怀化三模)若正数a,b,c满足a+b+c=1,则
+
+
的最小值为
1 |
3a+2 |
1 |
3b+2 |
1 |
3c+2 |
1
1
.分析:根据a+b+c=1,得到(3a+2)+(3b+2)+(3C+2)=9,结合柯西不等式证出9(
+
+
)≥9,从而
+
+
≥1,当且仅当a=b=c=
时等号成立,由此可得
+
+
的最小值.
1 |
3a+2 |
1 |
3b+2 |
1 |
3c+2 |
1 |
3a+2 |
1 |
3b+2 |
1 |
3c+2 |
1 |
3 |
1 |
3a+2 |
1 |
3b+2 |
1 |
3c+2 |
解答:解:∵a+b+c=1,
∴(3a+2)+(3b+2)+(3C+2)=3(a+b+c)+6=9
∵[(3a+2)+(3b+2)+(3C+2)](
+
+
)
≥(
•
+
•
+
•
)2=(1+1+1)2=9
∴9(
+
+
)≥9,得
+
+
≥1
当且仅当3a+2=3b+2=3C+2,即a=b=c=
时,
+
+
的最小值为1
故答案为:1
∴(3a+2)+(3b+2)+(3C+2)=3(a+b+c)+6=9
∵[(3a+2)+(3b+2)+(3C+2)](
1 |
3a+2 |
1 |
3b+2 |
1 |
3c+2 |
≥(
3a+2 |
1 | ||
|
3b+2 |
1 | ||
|
3c+2 |
1 | ||
|
∴9(
1 |
3a+2 |
1 |
3b+2 |
1 |
3c+2 |
1 |
3a+2 |
1 |
3b+2 |
1 |
3c+2 |
当且仅当3a+2=3b+2=3C+2,即a=b=c=
1 |
3 |
1 |
3a+2 |
1 |
3b+2 |
1 |
3c+2 |
故答案为:1
点评:本题给出三个正数a、b、c的和等于1,求关于a、b、c一个分式的最小值,着重考查了利用柯西不等式求最值的方法,属于中档题.根据柯西不等式的形式结合已知条件进行配凑,是解决本题的关键所在.
练习册系列答案
相关题目