题目内容
某同学在研究函数y=f(x)(x≥1,x∈N)的性质,他已经正确地证明了函数f(x)满足:f(3x)=3f(x),并且当1≤x≤3时,f(x)=[1-|x-2|],这样对任意x≥1,他都可以求f(x)的值了,比如f(3×)=3f()=3[1-|-2|]=1,f(54)=33f()=27,请你根据以上信息,求出集合M={x|f(x)=f(99)}中最小的元素是 .
【答案】分析:由f(3x)=3f(x)将f(99)递推下去求得18,再利用f(3x)=3f(x)递推得到f(x)=33f()=27[1-|-2|]=18,然后分类讨论去绝对值求解.
解答:解:根据题意:f(99)=3f(33)=32f(11)=33f()=34f()=81[1-|-2|]=18
∴f(x)=33f()=27[1-|-2|]=18
当时,27×[-1]=18解得:x=45
当时,27×[3-]=18解得x=63
∴集合M={x|f(x)=f(99)}中最小的元素是 45
故答案为:45
点评:本题是一定义题,要严格按照题目要求转化为已知的问题去解决,本题涉及到定义及绝对值方程的求法.
解答:解:根据题意:f(99)=3f(33)=32f(11)=33f()=34f()=81[1-|-2|]=18
∴f(x)=33f()=27[1-|-2|]=18
当时,27×[-1]=18解得:x=45
当时,27×[3-]=18解得x=63
∴集合M={x|f(x)=f(99)}中最小的元素是 45
故答案为:45
点评:本题是一定义题,要严格按照题目要求转化为已知的问题去解决,本题涉及到定义及绝对值方程的求法.
练习册系列答案
相关题目