题目内容
已知函数
,
R.
(1)求
的最小值,并求出相应的
值的集合;
(2)求
的单调递减区间.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240431313371253.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131353306.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131368429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131384266.png)
(2)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131400447.png)
最小值为
,相应的
的取值的集合为
.
(2)函数
的单调递减区间为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131415302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131384266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131446976.png)
(2)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131400447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240431315241048.png)
试题分析:(1)利用和差倍半的三角函数公式,化简得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240431315401017.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131368429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131384266.png)
(2)利用复合函数的单调性,解不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240431315871349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240431316181148.png)
本题较为简单,关键是要正确应用公式,将函数加以化简.
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240431316341927.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131649860.png)
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131400447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131415302.png)
此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131384266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240431317271108.png)
即相应的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131384266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131446976.png)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240431317741339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240431316181148.png)
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043131400447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240431315241048.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容