题目内容
已知各项均为正数的数列{an}满足a1=1,且
an+an+1
+
-
=0.
(Ⅰ)求a2,a3的值;
(Ⅱ)求证:{
}是等差数列;
(Ⅲ)若bn=
+anan+1,求数列{bn}的前n项和.
a | 2 n+1 |
a | 2 n |
a | 2 n+1 |
a | 2 n |
(Ⅰ)求a2,a3的值;
(Ⅱ)求证:{
1 |
an |
(Ⅲ)若bn=
2n |
an |
分析:(Ⅰ)先根据已知条件推得数列的递推关系式,再把2,3代入即可;
(Ⅱ)直接根据条件推得结论;
(Ⅲ)先求出数列的通项,再利用错位相减法以及裂项法求和即可.
(Ⅱ)直接根据条件推得结论;
(Ⅲ)先求出数列的通项,再利用错位相减法以及裂项法求和即可.
解答:解:∵各项均为正数的数列{an}满足a1=1,且
an+an+1
+
-
=0.
∴an+1•an(an+1+an)+(an+1+an)(an+1-an)=0
(an+1+an)(an+1•an+an+1-an)=0
∴an+1•an+an+1-an=0
∴
-
+1=0;
∴
-
=1.①
(Ⅰ)∴
=1+
=2
∴a2=
;
同理:a3=
.
(Ⅱ)由①得{
}是首项为1,公差为1的等差数列;
∴
=1+(n-1)×1=n;
∴an=
.
(Ⅲ)∴bn=
+anan+1=•2n+
;
{n•2n}的和
Sn=1•21+2•22+…+n•2n …①,
2Sn=2•21+3•22+…+n•2n+1 …②,
∴①-②得
-Sn=21+22+23+…+2n-n•2n+1
∴-Sn=
-n×2n+1
∴Sn=(n-1)2n+1+2;
{
-
}的和为:Tn=(1-
)+(
-
)+…+(
-
)=1-
=
.
∴数列{bn}的前n项和为:Sn+Tn=(n-1)2n+1+2+
..
a | 2 n+1 |
a | 2 n |
a | 2 n+1 |
a | 2 n |
∴an+1•an(an+1+an)+(an+1+an)(an+1-an)=0
(an+1+an)(an+1•an+an+1-an)=0
∴an+1•an+an+1-an=0
∴
1 |
an |
1 |
an+1 |
∴
1 |
an+1 |
1 |
an |
(Ⅰ)∴
1 |
a2 |
1 |
a1 |
∴a2=
1 |
2 |
同理:a3=
1 |
3 |
(Ⅱ)由①得{
1 |
an |
∴
1 |
an |
∴an=
1 |
n |
(Ⅲ)∴bn=
2n |
an |
1 |
n(n+1) |
{n•2n}的和
Sn=1•21+2•22+…+n•2n …①,
2Sn=2•21+3•22+…+n•2n+1 …②,
∴①-②得
-Sn=21+22+23+…+2n-n•2n+1
∴-Sn=
2(1-2n) |
1-2 |
∴Sn=(n-1)2n+1+2;
{
1 |
n |
1 |
n+1 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
n |
n+1 |
∴数列{bn}的前n项和为:Sn+Tn=(n-1)2n+1+2+
n |
n+1 |
点评:本题以数列递推式为载体,考查构造法证明等差数列,考查数列的通项,考查裂项法求和.运用了错位相减法求数列的前n项和,这个方法是高考中常用的方法,同学们要熟练掌握它.
练习册系列答案
相关题目