题目内容
已知△ABC中,cos(
-A)+cos(π+A)=-
.
(1)判断△ABC是锐角三角形还是钝角三角形;
(2)求tanA的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739617494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739633308.png)
(1)判断△ABC是锐角三角形还是钝角三角形;
(2)求tanA的值.
(1)△ABC是钝角三角形
(2)-![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739648373.png)
(2)-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739648373.png)
解:(1)由已知得,-sinA-cosA=-
.
∴sinA+cosA=
.①
①式平方得,1+2sinAcosA=
,
∴sinAcosA=-
<0,
又∵0<A<π,∴sinA>0,cosA<0.
∴A为钝角,故△ABC是钝角三角形.
(2)∵(sinA-cosA)2=1-2sinAcosA=1+
=
.
又∵sinA>0,cosA<0,
∴sinA-cosA>0,
∴sinA-cosA=
,
又由已知得sinA+cosA=
,
故sinA=
,cosA=-
,
∴tanA=
=-
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739633308.png)
∴sinA+cosA=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739633308.png)
①式平方得,1+2sinAcosA=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739695405.png)
∴sinAcosA=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739711442.png)
又∵0<A<π,∴sinA>0,cosA<0.
∴A为钝角,故△ABC是钝角三角形.
(2)∵(sinA-cosA)2=1-2sinAcosA=1+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739726455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739742498.png)
又∵sinA>0,cosA<0,
∴sinA-cosA>0,
∴sinA-cosA=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739773359.png)
又由已知得sinA+cosA=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739633308.png)
故sinA=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739789346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739820369.png)
∴tanA=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739836599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052739648373.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目