题目内容
(1)计算3log32-2(log34)(log827)-
log68+2log
.
(2)若x
+x-
=
,求
的值.
1 |
3 |
1 |
6 |
3 |
(2)若x
1 |
2 |
1 |
2 |
7 |
x+x-1 |
x2+x-2-3 |
分析:(1)把对数式中底数和真数的数4、8、27化为乘方的形式,把底数的分数化为负指数幂,把真数的根式化为分数指数幂,然后直接利用对数的运算性质化简求值;
(2)把已知条件两次平方得到x+x-1与x2+x-2,代入
得答案.
(2)把已知条件两次平方得到x+x-1与x2+x-2,代入
x+x-1 |
x2+x-2-3 |
解答:解:(1)3log32-2(log34)(log827)-
log68+2log
=2-2log322•log2333-
log623+2log6-13
=2-4
×
-log62-log63
=2-4-1=-3;
(2)∵x
+x-
=
,∴(x
+x-
)2=7,∴x+x-1=5.
则(x+x-1)2=25,∴x2+x-2=23
∴
=
=
.
1 |
3 |
1 |
6 |
3 |
=2-2log322•log2333-
1 |
3 |
1 |
2 |
=2-4
lg2 |
lg3 |
lg3 |
lg2 |
=2-4-1=-3;
(2)∵x
1 |
2 |
1 |
2 |
7 |
1 |
2 |
1 |
2 |
则(x+x-1)2=25,∴x2+x-2=23
∴
x+x-1 |
x2+x-2-3 |
5 |
23-3 |
1 |
4 |
点评:本题考查了有理指数幂的化简与求值,考查了对数的运算性质,是基础的计算题.
练习册系列答案
相关题目