题目内容

已知奇函数数学公式有最大值数学公式,且数学公式,其中实数x>0,p、q是正整数..
(1)求f(x)的解析式;
(2)令数学公式,证明an+1>an(n是正整数).

解:(1)由奇函数f(-x)=-f(x)可得r=0,
x>0时,由
以及
可得到2q2-5q+2<0,,只有q=1=p,

(2)
则由
=(n是正整数),
可得所求证结论.
分析:(1)由奇函数的定义知f(-x)+f(x)=0恒成立,求出r,利用基本不等式求出函数的最大值,以及且,其中p、q是正整数,即得函数的解析式.
(2)根据(1),求出,作出,即可证明结论.
点评:本题是中档题.考查函数的奇偶性和函数的最值,以及待定系数法求函数的解析式,以一道不错的综合题,考查分析问题解决问题的能力和运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网