题目内容

20.已知等差数列{an}的首项a1=1,公差d=-$\frac{1}{2}$,若直线x+y-3an=0和直线2x-y+2an-1=0的交点M在第四象限,则an=$-\frac{1}{2}n+\frac{3}{2}(n=3,4)$.

分析 联立直线方程求得M的坐标,再由M在第四象限求出an的范围,由已知写出等差数列的通项公式,然后求出n的值,则答案可求.

解答 解:联立$\left\{\begin{array}{l}{x+y-3{a}_{n}=0}\\{2x-y+2{a}_{n}-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{{a}_{n}+1}{3}}\\{y=\frac{8{a}_{n}-1}{3}}\end{array}\right.$,
∵M在第四象限,则$\left\{\begin{array}{l}{\frac{{a}_{n}+1}{3}>0}\\{\frac{8{a}_{n}-1}{3}<0}\end{array}\right.$,解得$-1<{a}_{n}<\frac{1}{8}$.
由等差数列{an}的首项a1=1,公差d=-$\frac{1}{2}$,得${a}_{n}=-\frac{1}{2}n+\frac{3}{2}$,
∴$-1<-\frac{1}{2}n+\frac{3}{2}<\frac{1}{8}$,解得$\frac{11}{4}<n<5$,
又n∈N*,∴n=3,4.
∴${a}_{n}=-\frac{1}{2}n+\frac{3}{2}(n=3,4)$.
故答案为:$-\frac{1}{2}n+\frac{3}{2}(n=3,4)$.

点评 本题考查了两直线的交点问题,考查等差数列的通项公式,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网