题目内容

已知参赛号码为1~4号的四名射箭运动员参加射箭比赛。
(1)通过抽签将他们安排到1~4号靶位,试求恰有一名运动员所抽靶位号与其参赛号码相同的概率;
(2)记1号,2号射箭运动员,射箭的环数为ξ(ξ所有取值为0,1,2,3...,10)。
根据教练员提供的资料,其概率分布如下表:

①若1,2号运动员各射箭一次,求两人中至少有一人命中8环的概率;
②判断1号,2号射箭运动员谁射箭的水平高?并说明理由。

解:(1)从4名运动员中任取一名,其靶位号与参赛号相同,有种方法,
另3名运动员靶位号与参赛号均不相同的方法有2种,
所以恰有一名运动员所抽靶位号与参赛号相同的概率为
(2)①由表可知,两人各射击一次,都未击中8环的概率为P=(1-0.2)(1-0.32)=0.544,
∴至少有一人命中8环的概率为p=1-0.544=0.456;


所以2号射箭运动员的射箭水平高。
练习册系列答案
相关题目