题目内容
【题目】在平面直角坐标系中,动点到定点的距离和它到直线的距离
之比是常数,记动点的轨迹为.
(1)求轨迹的方程;
(2)过点且不与轴重合的直线,与轨迹交于,两点,线段的垂直平分线与轴交于点,与轨迹是否存在点,使得四边形为菱形?若存在,请求出直线的方程;若不存在,请说明理由.
【答案】(1);(2)或.
【解析】
试题分析:(1)直接根据题设条件列出等式,再进行化简,即可得到动点的轨迹的方程;(2)先假设存在,并设出直线的方程,联立直线与椭圆,结合韦达定理得到中点的坐标,进而表示出点的坐标,再根据点在椭圆上,可求出直线的方程.
试题解析:(1)设动点,
动点到定点的距离和它到直线的距离之比是常数,
由题意,得,
化简整理得的方程为.
轨迹的方程为. ...(3分)
(2)假设存在满足条件.依题意设直线为,
联立,消去,得,
令,,
则,,...(7分)
的中点的坐标为.
,直线的方程为,
令,解得,即. ...(9分)
、关于点对称,,,
解得,,即. ...(11分)
点在椭圆上,,
解得,,,
的方程为或. ...(13分)
【题目】为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本.
(1)根据所给样本数据完成下面2×2列联表;
(2)请问能有多大把握认为药物有效?
不得禽流感 | 得禽流感 | 总计 | |
服药 | |||
不服药 | |||
总计 |
【题目】性格色彩学创始人乐嘉是江苏电视台当红节目“非诚勿扰”的特约嘉宾,他的点评视角独特,语言犀利,给观众留下了深刻的印象,某报社为了了解观众对乐嘉的喜爱程度,随机调查了观看了该节目的140名观众,得到如下的列联表:(单位:名)
男 | 女 | 总计 | ||||||
喜爱 | 40 | 60 | 100 | |||||
不喜爱 | 20 | 20 | 40 | |||||
总计 | 60 | 80 | 140 | |||||
p(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |||
k0 | 2.705 | 3.841 | 5.024 | 6.635 | 7.879 | |||
(Ⅰ)从这60名男观众中按对乐嘉是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?
(Ⅱ)根据以上列联表,问能否在犯错误的概率不超过0.025的前提下认为观众性别与喜爱乐嘉有关?(精确到0.001)
(Ⅲ)从(Ⅰ)中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱乐嘉的概率.
附: