题目内容
已知函数y=lg(ax2-4ax+3a+6)的定义域为R,则实数a的取值范围是( )
分析:由真数恒大于0,对a分类讨论求解,当a=0时满足题意,当a≠0时,需要
,最后取并集即可得到答案.
|
解答:解:由y=lg(ax2-4ax+3a+6)的定义域为R,
说明对任意的实数x,都有ax2-4ax+3a+6>0成立,
当a=0时,6>0显然成立,
当a≠0时,需要
,解得0<a<6.
综上,使函数y=lg(ax2-4ax+3a+6)的定义域为R的实数a的取值范围是[0,6).
故选B.
说明对任意的实数x,都有ax2-4ax+3a+6>0成立,
当a=0时,6>0显然成立,
当a≠0时,需要
|
综上,使函数y=lg(ax2-4ax+3a+6)的定义域为R的实数a的取值范围是[0,6).
故选B.
点评:本题考查了函数的定义域及其求法,考查了分类讨论的数学思想方法,是基础的计算题.

练习册系列答案
相关题目