题目内容
2.已知:α∥β,点P是平面α,β外一点,从点P引三条不共面的射线PA,PB,PC,与平面α分别相交于点A,B,C,与平面β分别相交于A′,B′,C′,求证:△ABC∽△A′B′C′.分析 由α∥β,得AB∥A'B',BC∥B'C',AC∥A'C',由此利用平行分线段成比例定理能证明$\frac{AB}{{A}^{'}{B}^{'}}=\frac{AC}{{A}^{'}{C}^{'}}=\frac{BC}{{B}^{'}{C}^{'}}$,由此能证明△ABC∽△A′B′C′.
解答
证明:由题意可知P、A、B、A'、B'在同一平面内,
∵α∥β,∴AB∥A'B',
∴$\frac{PA}{P{A}^{'}}$=$\frac{AB}{{A}^{'}{B}^{'}}$=$\frac{PB}{P{B}^{'}}$,
由题意可知P、B、C、B'、C'在同一平面内,
∵α∥β,∴BC∥B'C',
∴$\frac{PB}{P{B}^{'}}=\frac{BC}{{B}^{'}{C}^{'}}$
∴由题意可知P、A、C、A'、C'在同一平面内,
∵α∥β,∴AC∥A'C',
∴$\frac{PA}{P{A}^{'}}$=$\frac{AC}{{A}^{'}{C}^{'}}$
∴$\frac{AB}{{A}^{'}{B}^{'}}=\frac{AC}{{A}^{'}{C}^{'}}=\frac{BC}{{B}^{'}{C}^{'}}$,
∴△ABC∽△A′B′C′.
点评 本题考查两个三角形相似的证明,是基础题,解题时要认真审题,注意平行分线段成比例定理的合理运用.
练习册系列答案
相关题目
12.函数y=$(3+2x-{x}^{2})^{-\frac{1}{2}}$的单调递减区间是( )
| A. | (1,+∞) | B. | (-∞,1) | C. | (-1,1) | D. | (1,3) |
13.已知平行六面体OABC-O′A′B′C′,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,$\overrightarrow{OO′}$=$\overrightarrow{b}$,D是四边形0ABC的中心,则( )
| A. | $\overrightarrow{O′D}$=-$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$ | B. | $\overrightarrow{O′D}$=-$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$ | C. | $\overrightarrow{O′D}$=$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$ | D. | $\overrightarrow{O′D}$=$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$ |