题目内容
已知椭圆C中心在原点、焦点在x轴上,椭圆C上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线l过定点,并求出定点的坐标.
【答案】分析:(Ⅰ)由题设条件可知解得,由此能够推导出椭圆C的标准方程.
(Ⅱ)由方程组消去y,得(3+4k2)x2+8kmx+4m2-12=0,然后结合题设条件利用根的判别式和根与系数的关系求解.
解答:解:(Ⅰ)设椭圆的长半轴为a,半焦距为c,
则解得
∴椭圆C的标准方程为.
(Ⅱ)由方程组消去y,
得(3+4k2)x2+8kmx+4m2-12=0
由题意:△=(8km)2-4(3+4k2)(4m2-12)>0
整理得:3+4k2-m2>0 ①
设M(x1,y1)、N(x2,y2),
则,
由已知,AM⊥AN,且椭圆的右顶点为A(2,0)
∴(x1-2)(x2-2)+y1y2=0
即(1+k2)x1x2+(km-2)(x1+x2)+m2+4=0
也即
整理得:7m2+16mk+4k2=0
解得:m=-2k或,均满足①
当m=-2k时,直线l的方程为y=kx-2k,过定点(2,0),舍去
当时,直线l的方程为,过定点,
故直线l过定点,且定点的坐标为.
点评:本题综合考查椭圆的性质及应用和直线与椭圆的位置关系,具有较大的难度,解题时要注意的灵活运用.
(Ⅱ)由方程组消去y,得(3+4k2)x2+8kmx+4m2-12=0,然后结合题设条件利用根的判别式和根与系数的关系求解.
解答:解:(Ⅰ)设椭圆的长半轴为a,半焦距为c,
则解得
∴椭圆C的标准方程为.
(Ⅱ)由方程组消去y,
得(3+4k2)x2+8kmx+4m2-12=0
由题意:△=(8km)2-4(3+4k2)(4m2-12)>0
整理得:3+4k2-m2>0 ①
设M(x1,y1)、N(x2,y2),
则,
由已知,AM⊥AN,且椭圆的右顶点为A(2,0)
∴(x1-2)(x2-2)+y1y2=0
即(1+k2)x1x2+(km-2)(x1+x2)+m2+4=0
也即
整理得:7m2+16mk+4k2=0
解得:m=-2k或,均满足①
当m=-2k时,直线l的方程为y=kx-2k,过定点(2,0),舍去
当时,直线l的方程为,过定点,
故直线l过定点,且定点的坐标为.
点评:本题综合考查椭圆的性质及应用和直线与椭圆的位置关系,具有较大的难度,解题时要注意的灵活运用.
练习册系列答案
相关题目