题目内容
等比数列{an}单调递增,且满足:a1+a6=33,a3a4=32.(1)求数列{an}的通项公式;
(2)数列{bn}满足:b1=1且n≥2时,a2,abn,a2n-2成等比数列,Tn为{bn}前n项和,cn=
Tn+1 |
Tn |
Tn |
Tn+1 |
分析:(1)利用a1+a6=33,a3a4=32,可求首项与公比,从而求数列{an}的通项公式;
(2)由于a2,abn,a2n-2成等比数列故可化简得bn=n,从而有Tn=
,所以cn=
+
=2+2(
-
),故可得证.
(2)由于a2,abn,a2n-2成等比数列故可化简得bn=n,从而有Tn=
n(n+1) |
2 |
n+2 |
n |
n |
n+2 |
1 |
n |
1 |
n+2 |
解答:解:(1)由题意,数列{an}单增,所以,
?
∴q=2,∴an=2n-1;
(2)由题,abn2=a2a2n-2?(2bn-1)2=2•22n-3?2(bn-1)=2n-2?bn=n
∴Tn=
∴cn=
+
=1+
+1-
=2+2(
-
)
当n≥2时,c1+c2++cn=2n+2(1+
-
-
)0<1+
-
-
<
∴2n<c1+c2+…+cn<2n+3
当n=1时,2<c1=3+
<5
所以对任意的n∈N*,2n<c1+c2+…+cn<2n+3.
|
|
∴q=2,∴an=2n-1;
(2)由题,abn2=a2a2n-2?(2bn-1)2=2•22n-3?2(bn-1)=2n-2?bn=n
∴Tn=
n(n+1) |
2 |
∴cn=
n+2 |
n |
n |
n+2 |
2 |
n |
2 |
n+2 |
1 |
n |
1 |
n+2 |
当n≥2时,c1+c2++cn=2n+2(1+
1 |
2 |
1 |
n+1 |
1 |
n+2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
3 |
2 |
∴2n<c1+c2+…+cn<2n+3
当n=1时,2<c1=3+
1 |
3 |
所以对任意的n∈N*,2n<c1+c2+…+cn<2n+3.
点评:本题主要考查等比数列的通项公式、裂项求和,综合性强
练习册系列答案
相关题目