题目内容
已知命题p:对一切x∈[0,1],k•4x-k•2x+1+6(k-5)≠0,若命题p是假命题,则实数k的取值范围是______.
由已知,命题非p:对一切x∈[0,1],k•4x-k•2x+1+6(k-5)═0在x∈[0,1]有解是真命题,
构造函数f(x)=k•4x-k•2x+1+6(k-5),则f(x)=k•4x-k•2x+1+6(k-5),在区间[0,1]有零点
∴f(0)×f(1)≤0,即5(k-6)×6(k-5)≤0,
∴5≤k≤6,即实数k的取值范围是[5,6]
故应填[5,6]
构造函数f(x)=k•4x-k•2x+1+6(k-5),则f(x)=k•4x-k•2x+1+6(k-5),在区间[0,1]有零点
∴f(0)×f(1)≤0,即5(k-6)×6(k-5)≤0,
∴5≤k≤6,即实数k的取值范围是[5,6]
故应填[5,6]
练习册系列答案
相关题目