题目内容
设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,.
求椭圆C的离心率;
如果|AB|=,求椭圆C的方程.
【答案】
(Ⅰ).(Ⅱ).
【解析】
试题分析:设,由题意知<0,>0.
(Ⅰ)直线l的方程为 ,其中.
联立得
解得
因为,所以.
即
得离心率 . ……6分
(Ⅱ)因为,所以.
由得.所以,得a=3,.
椭圆C的方程为. ……12
考点:本题主要考查椭圆的标准方程,椭圆的几何性质,共线向量。
点评:中档题,涉及椭圆的题目,在近些年高考题中是屡见不鲜,往往涉及求椭圆标准方程,研究直线与椭圆的位置关系。求椭圆的标准方程,主要考虑定义、a,b,c,e的关系,涉及直线于椭圆位置关系问题,往往应用韦达定理。
练习册系列答案
相关题目