题目内容
已知,又,
且,求的值.
由有:,
有①②,
由得,即③,
又由得:,即④,
由①,②,③,④得,,
,
.
已知函数的定义域为,且的图象连续不间断. 若函数满足:对于给定的(且),存在,使得,则称具有性质.
(Ⅰ)已知函数,,判断是否具有性质,并说明理由;
(Ⅱ)已知函数 若具有性质,求的最大值;
(Ⅲ)若函数的定义域为,且的图象连续不间断,又满足,
求证:对任意且,函数具有性质.
(本小题满分13分)如图,9个正数排列成3行3列,其中每一行的数成等差数列,每一列的数成等比数列,且所有的公比都是,已知,又设第一行数列的公差为.
(Ⅰ)求出,及 ;
(Ⅱ)若保持这9个数的位置不动,按照上述规律,补成一个n行n列的数表如下,试写出数表第n行第n列的表达式,并求的值.
如下图,9个正数排列成3行3列,其中每一行的数成等差数列,每一列的数成等比数列,且所有的公比都是,已知,又设第一行数列的公差为.
(1)求出,及 ;
(2)若保持这9个数的位置不动,按照上述规律,补成一个n行n列的数表如下,试写出数表第n行第n列的表达式,并求的值.