题目内容
将所有平面向量组成的集合记作R2,f是从R2到R2的映射,记作![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_ST/5.png)
(1)若f(x1,x2)=(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_ST/6.png)
(2)如果f(x1,x2)=(x1+x2,x1-x2),计算f的特征值,并求相应的
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_ST/7.png)
(3)若f(x1,x2)=(a1x1+a2x2,b1x1+b2x2),要使f有唯一的特征值,实数a1,a2,b1,b2应满足什么条件?试找出一个映射f,满足以下两个条件:①有唯一的特征值λ,②||f||=|λ|,并验证f满足这两个条件.
【答案】分析:(1)由新定义可得
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/1.png)
,利用
=1,可得
≤1,从而可得结论;
(2)由特征值的定义可得:
,由此可得f的特征值,及相应的
;
(3)解方程组
,可得x1(a1-λ,b1)+x2(a2,-b1-λ)=0,从而可得a1,a2,b1,b2应满足的条件,当f(
)=λ
时,f有唯一的特征值,且||f||=|λ|,再进行证明即可.
解答:解:(1)由于此时
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/11.png)
,
又因为是在
=1的条件下,有
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/15.png)
=
≤1(x2=±1时取最大值),
所以此时有||f||=1;…(4分)
(2)由f(x1,x2)=(x1+x2,x1-x2)=λ(x1,x2),可得:
,
解此方程组可得:(λ-1)(λ+1)=1,从而λ=±
.
当λ=
时,解方程组
,此时这两个方程是同一个方程,
所以此时方程有无穷多个解,为
(写出一个即可),其中m∈R且m≠0.
当λ=-
时,同理可得,相应的
(写出一个即可),其中m∈R且m≠0.…(9分)
(3)解方程组
,可得x1(a1-λ,b1)+x2(a2,-b1-λ)=0
从而向量(a1-λ,b1)与(a2,-b1-λ)平行,
从而有a1,a2,b1,b2应满足:
.
当f(
)=λ
时,f有唯一的特征值,且||f||=|λ|.具体证明为:
由f的定义可知:f(x1,x2)=λ(x1,x2),所以λ为特征值.
此时a1=λ,a2=0,b1=0,b2=λ满足:
,所以有唯一的特征值.
在
=1的条件下
=λ2,从而有||f||=|λ|.…(14分)
点评:本题考查新定义,考查学生的计算能力,考查学生分析解决问题的能力,正确运用新定义是关键.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/4.png)
(2)由特征值的定义可得:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/6.png)
(3)解方程组
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/9.png)
解答:解:(1)由于此时
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/12.png)
又因为是在
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/17.png)
所以此时有||f||=1;…(4分)
(2)由f(x1,x2)=(x1+x2,x1-x2)=λ(x1,x2),可得:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/18.png)
解此方程组可得:(λ-1)(λ+1)=1,从而λ=±
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/19.png)
当λ=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/21.png)
所以此时方程有无穷多个解,为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/22.png)
当λ=-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/24.png)
(3)解方程组
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/25.png)
从而向量(a1-λ,b1)与(a2,-b1-λ)平行,
从而有a1,a2,b1,b2应满足:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/26.png)
当f(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/28.png)
由f的定义可知:f(x1,x2)=λ(x1,x2),所以λ为特征值.
此时a1=λ,a2=0,b1=0,b2=λ满足:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/29.png)
在
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104422615951189/SYS201311031044226159511019_DA/31.png)
点评:本题考查新定义,考查学生的计算能力,考查学生分析解决问题的能力,正确运用新定义是关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目