题目内容

已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。

(1)求椭圆C的方程;

(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。

 

【答案】

(1)

(2)

【解析】

试题分析:解:(1)由题意,c=1,可设椭圆方程为

因为A在椭圆上,所以,解得=3,(舍去)。

所以椭圆方程为 .                 6分

(2)设直线AE方程:得,代入

设E(),F().因为点A(1,)在椭圆上,所以

。                       9分

又直线AF的斜率与AE的斜率互为相反数,在上式中以,可得

所以直线EF的斜率

即直线EF的斜率为定值,其值为。      

考点:直线与椭圆的位置关系

点评:主要是考查了直线与椭圆的位置关系的运用,属于基础题。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网