题目内容
考察某种药物预防甲型H1N1流感的效果,进行动物试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本.
(Ⅰ)根据所给样本数据完成下面2×2列联表;
(Ⅱ)请问能有多大把握认为药物有效?
| 不得流感 | 得流感 | 总计 |
服药 | | | |
不服药 | | | |
总计 | | | |
(Ⅰ)填表:
(Ⅱ)大概90%认为药物有效。 不得流感 得流感 总计 服药 40 20 60 不服药 20 20 40 总计 60 40 100
解析试题分析:(Ⅰ)填表:
……………6分 不得流感 得流感 总计 服药 40 20 60 不服药 20 20 40 总计 60 40 100
(Ⅱ)假设检验问题:服药与动物得流感没有关系:
由(),所以大概90%认为药物有效。 ………10分
考点:列联表,卡方公式的应用。
点评:简单题,假设检验的“卡方公式”是:,不要求记忆,但要注意理解公式中字母的意义。
某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:
| A | B | C | D | E |
身高 | 1.69 | 1.73 | 1.75 | 1.79 | 1.82 |
体重指标 | 19.2 | 25.1 | 18.5 | 23.3 | 20.9 |
(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.
某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为
1 | 2 | 3 | 4 | 5 | |
0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
(Ⅰ)求事件:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率;
(Ⅱ)求的分布列及期望与方差D
“肇实,正名芡实,因肇庆所产之芡实颗粒大、药力强,故名。”某科研所为进一步改良肇实,为此对肇实的两个品种(分别称为品种A和品种B)进行试验.选取两大片水塘,每大片水塘分成n小片水塘,在总共2n小片水塘中,随机选n小片水塘种植品种A,另外n小片水塘种植B.
(1)假设n=4,在第一大片水塘中,种植品种A的小片水塘的数目记为,求的分布列和数学期望;
(2)试验时每大片水塘分成8小片,即n=8,试验结束后得到品种A和品种B在每个小片水塘上的每亩产量(单位:kg/亩)如下表:
号码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
品种A | 101 | 97 | 92 | 103 | 91 | 100 | 110 | 106 |
品种B | 115 | 107 | 112 | 108 | 111 | 120 | 110 | 113 |
为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛. 该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为分)进行统计,制成如下频率分布表.
分数(分数段) | 频数(人数) | 频率 |
[60,70) | ||
[70,80) | ||
[80,90) | ||
[90,100) | ||
合 计 |
(Ⅱ)按规定,预赛成绩不低于分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一·二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一·二班在决赛中进入前三名的人数为,求的分布列和数学期望.