题目内容
已知向量且,则
3
解析试题分析:因为,,又因为,所以,解得。考点:空间向量的简单性质;空间向量的数量积。点评:我们要熟记:向量的平方就等于其模的平方。一般有向量的模的时候要用到这一条。
若向量,则向量与的夹角的余弦值为 .
已知a = (1,–2),b =" (" 4, 2), a与b的夹角为q, 则q等于 。
如图,在直角梯形中,,, ,,点是梯形内(包括边界)的一个动点,点是边的中点,则 的最大值是____.
若=(2,1),=(-3,-4),则向量在向量方向上的正射影的坐标___________.
若向量则 。
已知各项为正数的数列满足(),且是的等差中项,则数列的通项公式是 .
若,且,则= .
若向量,那么 .