题目内容

(03年全国卷文)(12分)

已知正四棱柱点中点

(Ⅰ)证明的公垂线

(Ⅱ)求点的距离

解析:(I)证明:取BD中点M,连结MC,FM,

        ∵F为BD1中点, ∴FM∥D1D且FM=D1D

又EC=CC1,且EC⊥MC,

∴四边形EFMC是矩形  ∴EF⊥CC1 

又CM⊥面DBD1  ∴EF⊥面DBD1

∵BD1面DBD1

∴EF⊥BD1  故EF为BD1与CC1的公垂线

(II)解:连结ED1,有V

由(I)知EF⊥面DBD1,设点D1到面BDE的距离为d,

则SDBC?d=SDCD?EF.

∵AA1=2?AB=1.

故点D1到平面BDE的距离为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网