ÌâÄ¿ÄÚÈÝ
£¨2006•ËɽÇøÄ£Ä⣩£¨ÎÄ£©ÒÑÖªº¯Êýf(x)=ax2-2
x£¬g(x)=-
£¬£¨a£¬b¡ÊR£©
£¨¢ñ£©µ±b=0ʱ£¬Èôf£¨x£©ÔÚ[2£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©ÇóÂú×ãÏÂÁÐÌõ¼þµÄËùÓÐʵÊý¶Ô£¨a£¬b£©£ºµ±aÊÇÕûÊýʱ£¬´æÔÚx0£¬Ê¹µÃf£¨x0£©ÊÇf£¨x£©µÄ×î´óÖµ£¬g£¨x0£©ÊÇg£¨x£©µÄ×îСֵ£»
£¨¢ó£©¶ÔÂú×㣨¢ò£©µÄÌõ¼þµÄÒ»¸öʵÊý¶Ô£¨a£¬b£©£¬ÊÔ¹¹ÔìÒ»¸ö¶¨ÒåÔÚD={x|x£¾-2£¬ÇÒx¡Ù2k-2£¬k¡ÊN}Éϵĺ¯Êýh£¨x£©£¬Ê¹µ±x¡Ê£¨-2£¬0£©Ê±£¬h£¨x£©=f£¨x£©£¬µ±x¡ÊDʱ£¬h£¨x£©È¡µÃ×î´óÖµµÄ×Ô±äÁ¿µÄÖµ¹¹³ÉÒÔx0ΪÊ×ÏîµÄµÈ²îÊýÁУ®
4+2b-b2 |
1-(x-a)2 |
£¨¢ñ£©µ±b=0ʱ£¬Èôf£¨x£©ÔÚ[2£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©ÇóÂú×ãÏÂÁÐÌõ¼þµÄËùÓÐʵÊý¶Ô£¨a£¬b£©£ºµ±aÊÇÕûÊýʱ£¬´æÔÚx0£¬Ê¹µÃf£¨x0£©ÊÇf£¨x£©µÄ×î´óÖµ£¬g£¨x0£©ÊÇg£¨x£©µÄ×îСֵ£»
£¨¢ó£©¶ÔÂú×㣨¢ò£©µÄÌõ¼þµÄÒ»¸öʵÊý¶Ô£¨a£¬b£©£¬ÊÔ¹¹ÔìÒ»¸ö¶¨ÒåÔÚD={x|x£¾-2£¬ÇÒx¡Ù2k-2£¬k¡ÊN}Éϵĺ¯Êýh£¨x£©£¬Ê¹µ±x¡Ê£¨-2£¬0£©Ê±£¬h£¨x£©=f£¨x£©£¬µ±x¡ÊDʱ£¬h£¨x£©È¡µÃ×î´óÖµµÄ×Ô±äÁ¿µÄÖµ¹¹³ÉÒÔx0ΪÊ×ÏîµÄµÈ²îÊýÁУ®
·ÖÎö£º£¨¢ñ£©µ±b=0£¬Ê±£¬f£¨x£©=ax2-4x£¬ÌÖÂÛaµÄÈ¡Öµ£¬½áºÏ¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ½¨Á¢aµÄ²»µÈ¹Øϵ¼´¿É£»
£¨¢ò£©ÌÖÂÛaΪ0ʱ²»¿ÉÄÜ£¬ÒªÊ¹f£¨x£©ÓÐ×î´óÖµ£¬±ØÐëÂú×ã
¡Ý 0£¬Çó³ö´ËʱµÄx=x0£¬¸ù¾Ýg£¨x£©È¡×îСֵʱ£¬x=x0=a£¬½¨Á¢µÈÁ¿¹Øϵ£¬½áºÏaÊÇÕûÊý£¬Çó³öaºÍbµÄÖµ£®
£¨¢ó£©µ±ÊµÊý¶Ô£¨a£¬b£©ÊÇ£¨-1£¬-1£©£¬£¨-1£¬3£©Ê±£¬f£¨x£©=-x2-2x£¬ÒÀÌâÒ⣬ֻÐè¹¹ÔìÒÔ2£¨»ò2µÄÕýÕûÊý±¶£©ÎªÖÜÆÚµÄÖÜÆÚº¯Êý¼´¿É£®
£¨¢ò£©ÌÖÂÛaΪ0ʱ²»¿ÉÄÜ£¬ÒªÊ¹f£¨x£©ÓÐ×î´óÖµ£¬±ØÐëÂú×ã
|
£¨¢ó£©µ±ÊµÊý¶Ô£¨a£¬b£©ÊÇ£¨-1£¬-1£©£¬£¨-1£¬3£©Ê±£¬f£¨x£©=-x2-2x£¬ÒÀÌâÒ⣬ֻÐè¹¹ÔìÒÔ2£¨»ò2µÄÕýÕûÊý±¶£©ÎªÖÜÆÚµÄÖÜÆÚº¯Êý¼´¿É£®
½â´ð£º½â£º£¨¢ñ£©µ±b=0ʱ£¬f£¨x£©=ax2-4x£¬
Èôa=0£¬f£¨x£©=-4x£¬Ôòf£¨x£©ÔÚ[2£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬²»·ûÌâÒ⣮
¹Êa¡Ù0£¬ÒªÊ¹f£¨x£©ÔÚ[2£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬±ØÐëÂú×ã
£¬¡àa¡Ý1£®
£¨¢ò£©Èôa=0£¬f(x)=-2
x£¬Ôòf£¨x£©ÎÞ×î´óÖµ£¬¹Êa¡Ù0£¬¡àf£¨x£©Îª¶þ´Îº¯Êý£¬
Ҫʹf£¨x£©ÓÐ×î´óÖµ£¬±ØÐëÂú×ã
£¬¼´a£¼0ÇÒ1-
¡Üb¡Ü1+
£¬
´Ëʱ£¬x=x0=
ʱ£¬f£¨x£©ÓÐ×î´óÖµ£®
ÓÖg£¨x£©È¡×îСֵʱ£¬x=x0=a£¬ÒÀÌâÒ⣬ÓÐ
=a¡ÊZ£¬Ôòa2=
=
£¬
¡ßa£¼0ÇÒ1-
¡Üb¡Ü1+
£¬¡à0£¼a2¡Ü
(a¡ÊZ)£¬µÃa=-1£¬´Ëʱb=-1»òb=3£®
¡àÂú×ãÌõ¼þµÄʵÊý¶Ô£¨a£¬b£©ÊÇ£¨-1£¬-1£©£¬£¨-1£¬3£©£®
£¨¢ó£©µ±ÊµÊý¶Ô£¨a£¬b£©ÊÇ£¨-1£¬-1£©£¬£¨-1£¬3£©Ê±£¬f£¨x£©=-x2-2x
ÒÀÌâÒ⣬ֻÐè¹¹ÔìÒÔ2£¨»ò2µÄÕýÕûÊý±¶£©ÎªÖÜÆÚµÄÖÜÆÚº¯Êý¼´¿É£®
Èç¶Ôx¡Ê£¨2k-2£¬2k£©£¬k¡ÊN£¬x-2k¡Ê£¨-2£¬0£©£¬
´Ëʱ£¬h£¨x£©=h£¨x-2k£©=f£¨x-2k£©=-£¨x-2k£©2-2£¨x-2k£©£¬
¹Êh£¨x£©=-£¨x-2k£©2-2£¨x-2k£©£¬x¡Ê£¨2k-2£¬2k£©£¬k¡ÊN£®
Èôa=0£¬f£¨x£©=-4x£¬Ôòf£¨x£©ÔÚ[2£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬²»·ûÌâÒ⣮
¹Êa¡Ù0£¬ÒªÊ¹f£¨x£©ÔÚ[2£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬±ØÐëÂú×ã
|
£¨¢ò£©Èôa=0£¬f(x)=-2
4+2b-b2 |
Ҫʹf£¨x£©ÓÐ×î´óÖµ£¬±ØÐëÂú×ã
|
5 |
5 |
´Ëʱ£¬x=x0=
| ||
a |
ÓÖg£¨x£©È¡×îСֵʱ£¬x=x0=a£¬ÒÀÌâÒ⣬ÓÐ
| ||
a |
4+2b-b2 |
5-(b-1)2 |
¡ßa£¼0ÇÒ1-
5 |
5 |
5 |
¡àÂú×ãÌõ¼þµÄʵÊý¶Ô£¨a£¬b£©ÊÇ£¨-1£¬-1£©£¬£¨-1£¬3£©£®
£¨¢ó£©µ±ÊµÊý¶Ô£¨a£¬b£©ÊÇ£¨-1£¬-1£©£¬£¨-1£¬3£©Ê±£¬f£¨x£©=-x2-2x
ÒÀÌâÒ⣬ֻÐè¹¹ÔìÒÔ2£¨»ò2µÄÕýÕûÊý±¶£©ÎªÖÜÆÚµÄÖÜÆÚº¯Êý¼´¿É£®
Èç¶Ôx¡Ê£¨2k-2£¬2k£©£¬k¡ÊN£¬x-2k¡Ê£¨-2£¬0£©£¬
´Ëʱ£¬h£¨x£©=h£¨x-2k£©=f£¨x-2k£©=-£¨x-2k£©2-2£¨x-2k£©£¬
¹Êh£¨x£©=-£¨x-2k£©2-2£¨x-2k£©£¬x¡Ê£¨2k-2£¬2k£©£¬k¡ÊN£®
µãÆÀ£º±¾Ì⿼²éµÄÊÇÊýÁÐÓë²»µÈʽµÄ×ÛºÏÎÊÌ⣮µÈ²î¹ØϵµÄÈ·¶¨¡¢º¯Êýµ¥µ÷ÐÔµÄÓ¦Óã¬ÒÔ¼°º¯ÊýµÄ×îÖµ¼°Æ伸ºÎÒâÒ壬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿