题目内容
已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.
8<x≤9
解析:
根据题意,由f(3)=1,得f(9)=f(3)+f(3)=2.
又f(x)+f(x-8)=f[x(x-8)],故f[x(x-8)]≤f(9).
∵f(x)在定义域(0,+∞)上为增函数,∴解得8<x≤9.
练习册系列答案
相关题目
题目内容
已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.
8<x≤9
根据题意,由f(3)=1,得f(9)=f(3)+f(3)=2.
又f(x)+f(x-8)=f[x(x-8)],故f[x(x-8)]≤f(9).
∵f(x)在定义域(0,+∞)上为增函数,∴解得8<x≤9.