题目内容
已知函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_ST/1.png)
(Ⅰ)求ω的值;
(Ⅱ)若将函数f(x)的图象向右平移
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_ST/2.png)
【答案】分析:(Ⅰ)用二倍角公式可将函数化简为f(x)=sin(2ωx+
)+
,再由在y轴右侧的第一个最高点的横坐标为
可解得ω=1,
(Ⅱ)由(Ⅰ)得f(x)=sin(2x+
)+
,由正弦函数的性质,根据图象变换规律得出(x)=sin(
x-
)+
,令2kπ+
≤
x-
≤2kπ+
(k∈Z),即可解出其单调增区间.
解答:解:(Ⅰ)f(x)=
+
sin2ωx+1+cos2ωx
=
sin2ωx+
cos2ωx+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/16.png)
=sin(2ωx+
)+
.
令2ωx+
=
,将x=
代入可得:ω=1,
(Ⅱ)由(Ⅰ)得f(x)=sin(2x+
)+
,
函数f(x)的图象向右平移
个单位后得出y=sin[2(x-
)+
)]+
=sin(2x-
)+
,
再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)=sin(
x-
)+
,
最大值为1+
=
,
令2kπ+
≤
x-
≤2kπ+
(k∈Z),
4kπ+
π≤x≤4kπ+
,
单减区间[4kπ+
π,4kπ+
],(k∈Z).
点评:本题考查了利用两角和与差的公式化简解析式,三角函数的性质,图象变换规律.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/2.png)
(Ⅱ)由(Ⅰ)得f(x)=sin(2x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/11.png)
解答:解:(Ⅰ)f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/13.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/16.png)
=sin(2ωx+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/18.png)
令2ωx+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/21.png)
(Ⅱ)由(Ⅰ)得f(x)=sin(2x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/23.png)
函数f(x)的图象向右平移
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/29.png)
再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)=sin(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/32.png)
最大值为1+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/33.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/34.png)
令2kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/35.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/36.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/37.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/38.png)
4kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/39.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/40.png)
单减区间[4kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/41.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349780759565/SYS201311012313497807595014_DA/42.png)
点评:本题考查了利用两角和与差的公式化简解析式,三角函数的性质,图象变换规律.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目