题目内容
(川卷文)(本小题满分12分)
已知椭圆的左、右焦点分别为,离心率,右准线方程为。
(I)求椭圆的标准方程;
(II)过点的直线与该椭圆交于两点,且,求直线的方程。
,所求直线的方程为
解析:
解(I)由已知得,解得
∴
∴ 所求椭圆的方程为 .
(II)由(I)得、
①若直线的斜率不存在,则直线的方程为,由得
设、,
∴ ,这与已知相矛盾。
②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,
设、,
联立,消元得
∴ ,
∴ ,
又∵
∴
∴
化简得
解得
∴
∴ 所求直线的方程为 .
练习册系列答案
相关题目