题目内容

(2011•成都二模)记(bni=i+
1
2
+log2
i
n+1-i
,其中i,n∈N*,i≤n,如(bn3=3+
1
2
+log2
3
n+1-3
,令Sn=(bn1+(bn2+(bn3+…+(bnn
(I)求(bn1+(bnn的值;   
(Ⅱ)求Sn的表达式;
(Ⅲ)已知数列{an}满足Sn•an=1,设数列{an}的前n项和为Tn,若对一切n∈N*,不等式
11λ-3n2
(n+1)(n+2)
≤11(Tn-
3
2
)
恒成立,求实数λ的最大值.
分析:(I)由(bni=i+
1
2
+log2
i
n+1-i
,知(bn1+(bnn=(1+
1
2
+log2
1
n+1-1
)+(n+
1
2
+log2
n
n+1-n
),由此能求出(bn1+(bnn=n+2.
(Ⅱ)由Sn=(bn1+(bn2+(bn3+…+(bnn,知Sn=(bnn+(bnn-1+…+(bn2+(bn1,从而得到2Sn=(bn1+(bnn+(bn2+(bnn-1+(bn3+(bnn-2+…+(bnn+(bn1=n(n+2),由此能求出Sn的表达式.
(Ⅲ)由an=
1
Sn
=
2
n(n+2)
=
1
n
-
1
n+2
,知Tn=(1-
1
3
)+(
1
2
-
1
4
)+…+(
1
n
-
1
n+2
)
=1+
1
2
-
1
n+1
-
1
n+2
,故
11λ-3n2
(n+1)(n+2)
11(Tn-
3
2
)
恒成立,从而得到λ≤(
3
11
n2 -2n-3)min
,由此能求出实数λ的最大值.
解答:解:(I)∵(bni=i+
1
2
+log2
i
n+1-i

∴(bn1+(bnn=(1+
1
2
+log2
1
n+1-1
)+(n+
1
2
+log2
n
n+1-n

=n+2+log2
1
n
+log2n

=n+2.
(Ⅱ)∵Sn=(bn1+(bn2+(bn3+…+(bnn
Sn=(bnn+(bnn-1+…+(bn2+(bn1
∴2Sn=(bn1+(bnn+(bn2+(bnn-1+(bn3+(bnn-2+…+(bnn+(bn1
=n(n+2),
Sn=
n(n+2)
2

(Ⅲ)∵an=
1
Sn
=
2
n(n+2)
=
1
n
-
1
n+2

Tn=(1-
1
3
)+(
1
2
-
1
4
)+…+(
1
n
-
1
n+2
)

=1+
1
2
-
1
n+1
-
1
n+2

11λ-3n2
(n+1)(n+2)
11(Tn-
3
2
)
恒成立.
11λ-3n2
(n+1)(n+2)
≤-11(
1
n+1
+
1
n+2
)
恒成立,
∴11λ-3n2≤-11(2n+3)恒成立,
λ≤
3
11
n2-2n-3
恒成立,
λ≤(
3
11
n2 -2n-3)min

3
11
n2-2n-3=
3
11
(n2-
22
3
n)-3
,n∈N*
∴n=4时,
3
11
n2-2n-3
取得最小值-
73
11

λ≤-
73
11
,实数λ的最大值为-
73
11
点评:本题考查数列与不等式的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点,易错点是λ≤(
3
11
n2 -2n-3)min
的推导.解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网