题目内容
(2011•成都二模)记(bn)i=i+
+log2
,其中i,n∈N*,i≤n,如(bn)3=3+
+log2
,令Sn=(bn)1+(bn)2+(bn)3+…+(bn)n.
(I)求(bn)1+(bn)n的值;
(Ⅱ)求Sn的表达式;
(Ⅲ)已知数列{an}满足Sn•an=1,设数列{an}的前n项和为Tn,若对一切n∈N*,不等式
≤11(Tn-
)恒成立,求实数λ的最大值.
1 |
2 |
i |
n+1-i |
1 |
2 |
3 |
n+1-3 |
(I)求(bn)1+(bn)n的值;
(Ⅱ)求Sn的表达式;
(Ⅲ)已知数列{an}满足Sn•an=1,设数列{an}的前n项和为Tn,若对一切n∈N*,不等式
11λ-3n2 |
(n+1)(n+2) |
3 |
2 |
分析:(I)由(bn)i=i+
+log2
,知(bn)1+(bn)n=(1+
+log2
)+(n+
+log2
),由此能求出(bn)1+(bn)n=n+2.
(Ⅱ)由Sn=(bn)1+(bn)2+(bn)3+…+(bn)n,知Sn=(bn)n+(bn)n-1+…+(bn)2+(bn)1,从而得到2Sn=(bn)1+(bn)n+(bn)2+(bn)n-1+(bn)3+(bn)n-2+…+(bn)n+(bn)1=n(n+2),由此能求出Sn的表达式.
(Ⅲ)由an=
=
=
-
,知Tn=(1-
)+(
-
)+…+(
-
)=1+
-
-
,故
≤11(Tn-
)恒成立,从而得到λ≤(
n2 -2n-3)min,由此能求出实数λ的最大值.
1 |
2 |
i |
n+1-i |
1 |
2 |
1 |
n+1-1 |
1 |
2 |
n |
n+1-n |
(Ⅱ)由Sn=(bn)1+(bn)2+(bn)3+…+(bn)n,知Sn=(bn)n+(bn)n-1+…+(bn)2+(bn)1,从而得到2Sn=(bn)1+(bn)n+(bn)2+(bn)n-1+(bn)3+(bn)n-2+…+(bn)n+(bn)1=n(n+2),由此能求出Sn的表达式.
(Ⅲ)由an=
1 |
Sn |
2 |
n(n+2) |
1 |
n |
1 |
n+2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
n |
1 |
n+2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
11λ-3n2 |
(n+1)(n+2) |
3 |
2 |
3 |
11 |
解答:解:(I)∵(bn)i=i+
+log2
,
∴(bn)1+(bn)n=(1+
+log2
)+(n+
+log2
)
=n+2+log2
+log2n
=n+2.
(Ⅱ)∵Sn=(bn)1+(bn)2+(bn)3+…+(bn)n,
Sn=(bn)n+(bn)n-1+…+(bn)2+(bn)1,
∴2Sn=(bn)1+(bn)n+(bn)2+(bn)n-1+(bn)3+(bn)n-2+…+(bn)n+(bn)1
=n(n+2),
∴Sn=
.
(Ⅲ)∵an=
=
=
-
,
∴Tn=(1-
)+(
-
)+…+(
-
)
=1+
-
-
,
当
≤11(Tn-
)恒成立.
∴
≤-11(
+
)恒成立,
∴11λ-3n2≤-11(2n+3)恒成立,
∴λ≤
n2-2n-3恒成立,
∴λ≤(
n2 -2n-3)min,
而
n2-2n-3=
(n2-
n)-3,n∈N*.
∴n=4时,
n2-2n-3取得最小值-
.
∴λ≤-
,实数λ的最大值为-
.
1 |
2 |
i |
n+1-i |
∴(bn)1+(bn)n=(1+
1 |
2 |
1 |
n+1-1 |
1 |
2 |
n |
n+1-n |
=n+2+log2
1 |
n |
=n+2.
(Ⅱ)∵Sn=(bn)1+(bn)2+(bn)3+…+(bn)n,
Sn=(bn)n+(bn)n-1+…+(bn)2+(bn)1,
∴2Sn=(bn)1+(bn)n+(bn)2+(bn)n-1+(bn)3+(bn)n-2+…+(bn)n+(bn)1
=n(n+2),
∴Sn=
n(n+2) |
2 |
(Ⅲ)∵an=
1 |
Sn |
2 |
n(n+2) |
1 |
n |
1 |
n+2 |
∴Tn=(1-
1 |
3 |
1 |
2 |
1 |
4 |
1 |
n |
1 |
n+2 |
=1+
1 |
2 |
1 |
n+1 |
1 |
n+2 |
当
11λ-3n2 |
(n+1)(n+2) |
3 |
2 |
∴
11λ-3n2 |
(n+1)(n+2) |
1 |
n+1 |
1 |
n+2 |
∴11λ-3n2≤-11(2n+3)恒成立,
∴λ≤
3 |
11 |
∴λ≤(
3 |
11 |
而
3 |
11 |
3 |
11 |
22 |
3 |
∴n=4时,
3 |
11 |
73 |
11 |
∴λ≤-
73 |
11 |
73 |
11 |
点评:本题考查数列与不等式的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点,易错点是λ≤(
n2 -2n-3)min的推导.解题时要认真审题,仔细解答.
3 |
11 |
练习册系列答案
相关题目