题目内容
设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的( )A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】分析:直接把φ=0代入看能否推出是偶函数,再反过来推导结论即可.
解答:解:因为φ=0时,f(x)=cos(x+φ)=cosx是偶函数,成立;
但f(x)=cos(x+φ)(x∈R)为偶函数时,φ=kπ,k∈Z,推不出φ=0.
故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.
故选:A.
点评:断充要条件的方法是:
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
解答:解:因为φ=0时,f(x)=cos(x+φ)=cosx是偶函数,成立;
但f(x)=cos(x+φ)(x∈R)为偶函数时,φ=kπ,k∈Z,推不出φ=0.
故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.
故选:A.
点评:断充要条件的方法是:
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关题目