题目内容
在算式“4×□+9×△=◇”的□、△中,分别填入一个正整数,使它们的倒数之和的最小值为,则◇中应填入的值为 .
【答案】分析:适当设出变量x、y、z,则问题变为已知4x+9y=z,,求z的值.先将4x+9y=z变形为,再利用1的代换和均值不等式求解即可.
解答:解:设□、△、◇分别为x,y,z(x,y,z∈Z+),则4×□+9×△=◇为4x+9y=z,
∴,
∴,
∴z=30.
故答案为30.
点评:本题考查了利用均值不等式求最值,灵活运用了“1”的代换和方程思想,是高考考查的重点内容.
解答:解:设□、△、◇分别为x,y,z(x,y,z∈Z+),则4×□+9×△=◇为4x+9y=z,
∴,
∴,
∴z=30.
故答案为30.
点评:本题考查了利用均值不等式求最值,灵活运用了“1”的代换和方程思想,是高考考查的重点内容.
练习册系列答案
相关题目