题目内容
已知关于x的函数f(x)=+bx2+cx+bc,其导函数为f+(x).令g(x)=f+(x) ,记函数g(x)在区间[-1、1]上的最大值为M.
(Ⅰ)如果函数f(x)在x=1处有极值-,试确定b、c的值:
(Ⅱ)若b>1,证明对任意的c,都有M>2
(Ⅲ)若MK对任意的b、c恒成立,试求k的最大值。
(I)解析:,由在处有极值
可得
解得或
若,则,此时没有极值;
若,则
当变化时,,的变化情况如下表:
1 | |||||
0 | + | 0 | |||
极小值 | 极大值 |
当时,有极大值,故,即为所求。
(Ⅱ)证法1:
当时,函数的对称轴位于区间之外。
在上的最值在两端点处取得
故应是和中较大的一个
即
证法2(反证法):因为,所以函数的对称轴位于区间之外,
在上的最值在两端点处取得。
故应是和中较大的一个
假设,则
将上述两式相加得:
,导致矛盾,
(Ⅲ)解法1:
(1)当时,由(Ⅱ)可知;
(2)当时,函数)的对称轴位于区间内,
此时
由有
①若则,
于是
②若,则
于是
综上,对任意的、都有
而当时,在区间上的最大值
故对任意的、恒成立的的最大值为。
解法2:
(1)当时,由(Ⅱ)可知;
(2)当时,函数的对称轴位于区间内,
此时
,即
下同解法1
练习册系列答案
相关题目