题目内容
【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了若干名学生的体检表,并得到 如下直方图:
(Ⅰ)若直方图中前三组的频率成等比数列,后四组的频率成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年纪名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(Ⅲ)在(Ⅱ)中调查的100名学生中,在不近视的学生中按照成绩是否在前50名分层抽样抽取了9人,
进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为,求
的分布列和数学期望.
附:
【答案】(Ⅰ);(Ⅱ)在犯错的概率不超过的前提下认为视力与学习成绩有关系;(Ⅲ)分布列见解析,.
【解析】
试题分析:(Ⅰ)由频率分布直方图可知,当前三组的频率成等比数列,后四组的频率成等差数列时,以下的频率为,故全年级视力在以下的人数约为;
(Ⅱ)由,因此在犯错误的概率不超过的前提下认为视力与学习成绩有关系;
(Ⅲ)依题可取,,,,则,,
,,
所以的数学期望.
试题解析:(Ⅰ)设各组的频率为,
依题意,前三组的频率成等比数列,后四组的频率成等差数列,故
,,
所以由得,
所以视力在5.0以下的频率为1-0.17=0.83,
故全年级视力在5.0以下的人数约为
(Ⅱ)
因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系.
(Ⅲ)依题意9人中年级名次在1~50名和951~1000名分别有3人和6人,
可取0,1,2,3,
,,
,
的分布列为
X | 0 | 1 | 2 | 3 |
P |
的数学期望
练习册系列答案
相关题目